
Customizing Rational Functional Tester scripts for data-driven testing Page 1 of 7

Customizing Rational Functional Tester scripts for
data-driven testing
Level: Intermediate

Pradosh Tarkar (pradosht@in.ibm.com), Software Engineer, IBM India Software Labs

24 Oct 2006

Learn about an approach involving the use of datapools for implementing data-driven tests and the necessary
customization required in Rational Functional Tester 6.1 scripts. There are a number of ways automation engineers can
implement data-driven tests in Functional Tester. The article will talk about how comma separated files (CSV) can be
imported in Functional Tester as a datapool. The article will also demonstrate an example of a script modified to read data
values from this CSV datapool.

Introduction
Data-driven testing is one of the most important aspects of functional automation. It's the most important technique to implement an
actual usage scenario by providing unique data sets to the automation, making it more realistic and closer to the end user usage pattern.
It's also useful in scenarios where millions of records are required to be supplied to the application under test for complete coverage.
IBM® Rational® Functional Tester provides a framework which is useful for creating automated data-driven test scripts. However,
automation engineers are required to customize their scripts to suit their application and specific requirements.

What is a datapool?
A datapool is nothing more than a test dataset. It's a collection of related data records which supplies data values to the variables in a
test script during test script playback.

Creating a datapool
Automation engineers can use the following step-by-step procedure to import a CSV file to RFT.

1. Create a .CSV (comma separated values file) with the desired test data set. See Figure 1.

Figure 1. CSV file

2. Open Functional Tester with the correct data store. Right click on Project and select Add Test Datapool.

Figure 2. Adding a test datapool

Customizing Rational Functional Tester scripts for data-driven testing Page 2 of 7

3. Select the project and enter a name for the datapool. Click Next.

Figure 3. Naming the datapool

4. Browse to the CSV file you wish to import, which contains the desired test data. Click Finish.

Figure 4. Finishing the import

Customizing Rational Functional Tester scripts for data-driven testing Page 3 of 7

5. Open the datapool to verify it.

Figure 5. Verifying the datapool

Using the imported CSV file as a datapool
1. Right-click on the Project and select Add Script Using Recorder.

Figure 6. Adding a script

2. Select the project and enter a script name. Cick on Next.

Figure 7. Naming the script

Customizing Rational Functional Tester scripts for data-driven testing Page 4 of 7

3. Update the script assets Window pop-up with necessary details.

Figure 8. Selecting script assets

4. To select the test datapool, click on Browse and select the newly imported CSV datapool. Click OK.

Figure 9. Selecting the datapool

Customizing Rational Functional Tester scripts for data-driven testing Page 5 of 7

5. Click Finish.
6. Open the application.

Figure 10. The application

7. Select the application and click OK. In this case, we're using the ClassicJavaB sample application.

Figure 11. Selecting the application

8. Start recoding a script for the data input operations you wish to automate. We clicked on the Place Order button, selected the
New Customer radio button and then clicked OK. On the next screen the application opens up a Place an order form. We
entered values in Card number, Expiration Date, Name, Street, City, State, zip and Phone before clicking the Place
order button. Finally we clicked OK for order confirmation.

9. The above script recording will generate the following recorded script:

Listing 1. The recorded script
import resources.Script1Helper;
import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.script.*;
import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;

public class Script1 extends Script1Helper
{

public void testMain(Object[] args)
{

// Start Application
startApp("ClassicsJavaB");

// Click on Place Order
placeOrder().click();

// Click on New Customer radio button
newCustomer().click();
ok().click();

// Enter the values
cardNumberIncludeTheSpacesText().click(atPoint(43,10));
placeAnOrder().inputKeys("1111 1111 1111 1111");
expirationDateText().click(atPoint(33,9));
placeAnOrder().inputChars("01/06");
nameText().click(atPoint(95,6));
placeAnOrder().inputChars("rama");
streetText().click(atPoint(65,13));
placeAnOrder().inputChars("saswad raod");
cityStateZipText().click(atPoint(44,9));
placeAnOrder().inputChars("pune");
phoneText().click(atPoint(31,14));

Customizing Rational Functional Tester scripts for data-driven testing Page 6 of 7

placeAnOrder().inputChars("91 22 122345");
placeOrder().click();

//
ok().click();

// Frame: ClassicsCD
classicsJava(ANY,MAY_EXIT).close();

}
}

10. This recorded script is useful for re-entering the static records which got hard coded in the script. For data-driven testing,
automation engineers are required to provide unique records when the script gets executed. The above recorded script needs to
be modified in order to provide the necessary data set from the datapool at runtime. The test script shown below is a
customized script for that purpose. The modified part of the script is marked in bold.

Listing 2. Customized script
import org.eclipse.hyades.execution.runtime.datapool.IDatapoolIterator;

import resources.Script1Helper;

import com.rational.test.ft.*;
import com.rational.test.ft.object.interfaces.*;
import com.rational.test.ft.script.*;
import com.rational.test.ft.value.*;
import com.rational.test.ft.vp.*;

public class Script1 extends Script1Helper
{

public void testMain(Object[] args)
{
// DatapoolScriptSupport provides methods for accessing rows in an associated datapool.

|-------10--------20--------30--------40--------50--------60--------70--------80--------9|
|-------- XML error: The previous line is longer than the max of 90 characters ---------|

DatapoolScriptSupport dpss = new DatapoolScriptSupport();

//Declare 'dp' as an object for IDatapool
(org.eclipse.hyades.execution.runtime.datapool.IDatapool)

org.eclipse.hyades.execution.runtime.datapool.IDatapool dp;

//Create a file object with complete TestDatapool file path
java.io.File dpfile = new java.io.File("D:\\Documents and Settings\\
pradosht\\IBM\\rationalsdp6.0\\workspace\\Project3\\TestDatapool1.rftdp");

//Load the Testdatapool
dp = dpss.dpFactory().load(dpfile,true);

//Open the Test Datapool
IDatapoolIterator dpitr = dpss.dpFactory().open(dp,"");

//Initialize Test Datapool
dpitr.dpInitialize(dp);

//Starting application
startApp("ClassicsJavaB");

while(!dpitr.dpDone())
{

// Click on Place order
placeOrder().click();

// Click on New Customer
newCustomer().click();
ok().click();

//Get the current record & store it in record object
IDatapoolRecord dprec = dpitr.dpCurrent();

// Frame: Place an Order Click on Card Number
cardNumberIncludeTheSpacesText().click();

//By accessing the corresponding cell in the current record from excel sheet
|-------10--------20--------30--------40--------50--------60--------70--------80--------9|
|-------- XML error: The previous line is longer than the max of 90 characters ---------|

placeAnOrder().inputKeys(dprec.getCell(0).getStringValue());

// Frame: Place an Order Click on Date
expirationDateText().click();

Customizing Rational Functional Tester scripts for data-driven testing Page 7 of 7

//By accessing the corresponding cell in the current record from excel sheet
|-------10--------20--------30--------40--------50--------60--------70--------80--------9|
|-------- XML error: The previous line is longer than the max of 90 characters ---------|

placeAnOrder().inputChars(dprec.getCell(1).getStringValue());

// Frame: Place an Order Click on Name
nameText().click();

//By accessing the corresponding cell in the current record from excel sheet
placeAnOrder().inputChars(dprec.getCell(2).getStringValue());

// Frame: Place an Order Click on Street
streetText().click();

//By accessing the corresponding cell in the current record from excel sheet
placeAnOrder().inputChars(dprec.getCell(3).getStringValue());

// Frame: Place an Order Click on CityStateZip
cityStateZipText().click();

//By accessing the corresponding cell in the current record from excel sheet
placeAnOrder().inputChars(dprec.getCell(4).getStringValue());

// Frame: Place an Order Click on Phone
phoneText().click();

//By accessing the corresponding cell in the current record from excel sheet
placeAnOrder().inputChars(dprec.getCell(5).getStringValue());

|-------10--------20--------30--------40--------50--------60--------70--------80--------9|
|-------- XML error: The previous line is longer than the max of 90 characters ---------|

// Frame: Place an Order
placeOrder2().click();

//Order Confirmation
ok2().click();

//Iterating to the Next Record
dpitr.dpNext();

}

// Close Application
classicsJava(ANY,MAY_EXIT).close();

}
}

In this article you learned how to use datapools for implementing data-driven tests and the necessary customization required in
Rational Functional Tester 6.1 scripts. We hope you found it helpful.

Resources
ò The Rational products' trial downloads area is a great way to evaluate products.

ò In the developerWorks Rational Performance Tester product area you'll find technical documentation, how-to articles,
education, downloads, product information, and more.

ò Participate in the developerWorks Rational forums to get involved in the developerWorks community.

About the author
Pradosh Tarkar is a System Software Engineer working in the IBM Workplace Component Designer team. He is based in
India at the Software Labs (ISL) Pune and has expertise in software testing. He holds an Engineering degree in
Electronics & a MBA in Systems. He also has Sun Certified Java Programmer 1.4 certification. He has experience in
BVT, FVT, Globalization Verification Testing, accessibility testing, and automation tools like Rational Robot and
Rational Functional Tester.

