
Testing E-Commerce Systems: A Practical Guide - Wing Lam

As e-customers (whether business or consumer), we are unlikely to have confidence in a Web

site that suffers frequent downtime, hangs in the middle of a transaction, or has a poor sense of

usability. Testing, therefore, has a crucial role in the overall development process. Given

unlimited time and resources, you could test a system to exhaustion. However, most projects

operate within fixed budgets and time scales, so project managers need a systematic and cost-

effective approach to testing that maximizes test confidence.

This article provides a quick and practical introduction to testing medium- to large-scale

transactional e-commerce systems based on project experiences developing tailored solutions

for B2C Web retailing and B2B procurement. Typical of most e-commerce systems, the

application architecture includes front-end content delivery and management systems, and

back-end transaction processing and legacy integration.

 Aimed primarily at project and test managers, this article explains how to

• establish a systematic test process, and

• test e-commerce systems.

The Test Process

You would normally expect to spend between 25 to 40 percent of total project effort on testing

and validation activities. Most seasoned project managers would agree that test planning needs

to be carried out early in the project lifecycle. This will ensure the time needed for test

preparation (establishing a test environment, finding test personnel, writing test scripts, and so

on) before any testing can actually start.

The different kinds of testing (unit, system, functional, black-box, and others) are well

documented in the literature. However, less well articulated (despite the good general texts in

software engineering) is the test process that ties together all testing and validation activities

used to deliver a quality solution to the client. Table 1 presents a matrix model

of the test process that my colleagues and I have come to adopt on several e-commerce projects.

Several goals (listed in the table's first column) guide this model; one or more processes

support the achievement of each goal.

Set and agree on realistic expectations for the system

• Prioritize business requirements; identify those that are essential and those that are

optional.

• For a given delivery date, filter out, reprioritize, or renegotiate unrealistic system

expectations.

• Specify requirements that are testable. Remove or firm up ambiguous

requirements.

• Define acceptance criteria that are meaningful to the business.

• Define relevant industry standards or competitive benchmarks.

• Ensure that stakeholders agree to a capacity plan for the system with measurable

capacity requirements.

Define a test strategy

• Formulate and document a test strategy; relate it to the test quality plan.

• Identify high-risk zones early on; mark these for early testing and keep them away

from the project's critical path.

• Identify all aspects of the system that require testing; in each case, indicate the level

and form of testing.

• Identify relevant testing tools that can help automate or document elements of the

test process.

 Plan the testing

• Estimate required resources, such as tools, people, hardware and software

infrastructure, test location, and so on.

• Define roles and responsibilities; identify a suitably qualified test manager and test

team.

• Draw up and agree to a detailed test plan with the client; define test milestones and

test deliverables.

• Plan a pre-release simulation period where the system can be observed under

simulated business usage.

Set up the test environment

• Set up the physical test environment-for example, the hardware and software

infrastructure.

• Prepare test material such as detailed test plans, test scripts, and test data. Prepare

test materials with reuse in mind.

• Set up the defect-tracking system; decide on the form of defect reporting and any

test metrics to use.

• Define test standards and procedures; educate individuals on the use of standards

and procedures.

• Acquire and prepare the necessary test tools; ensure that the test team receives

relevant training.

 Perform testing

• Conduct appropriate quality reviews, such as code reviews and walk-throughs.

• Conduct testing, whether at the unit, integration, system, or use-acceptance level.

• Execute tests and collate test results; record results and incidents in the defect-

tracking system.

• Analyze test results; monitor areas with a high incidence of defects and defect

severity.

• Track and manage defect resolution.

• Where appropriate, repeat the test and reuse test materials to expedite retesting.

• Stage a pre-live simulation period; test the system under the expected business

usage and observe results.

• Manage the decision to go live based on testing results; consider if the system has

achieved a release standard.

 Monitor the deployed system

• Monitor system performance using relevant monitoring tools; use performance

reporting to guide performance-tuning activities.

• Capture any residual defects; assess their priority and, if serious, consider a

rectification plan.

• Gather feedback and problem reports from users; analyze these to identify future

improvements.

 Manage successive releases

• Capture and prioritize new business requirements; assess their impact on the

system before committing to them.

• Fix outstanding and residual defects.

• Plan the system's next release; agree to a release plan with relevant stakeholders.

• Ensure a smooth transition from the current release to the new release.

We prefer the term "goals" to "phases" to indicate the fact that goals are concurrent. That is, you

can be testing the system's current release, but at the same time, setting and agreeing to realistic

expectations for the next release.

 The model-or at least parts of it-should be familiar to those experienced in test management

roles. Those who aren't or don't follow a systematic test process can use the matrix model as a

template for planning testing and validation activities by allocating processes to a project plan.

It is also useful as a tool for improving a test process by checking the model against the actual

process.

Testing an E-Commerce System
 So how do you test an e-commerce system? What types of testing do you need to do? Here, I

present a checklist of test areas that group together common types of testing normally applied

to e-commerce systems. (Some of these tests also apply to other types of systems.)

You can cover certain test areas (such as browser compatibility) relatively quickly, whereas

others (like those for transaction integrity) require a higher level of effort.

Browser compatibility

Customers will become frustrated if they can't get to your e-commerce site easily. Though

relatively simple to do, it pays to spend enough time testing in this area.

Lack of support for early browsers. Not all browsers are equal. For example, some early

versions of Internet Explorer and Netscape Navigator do not fully support JavaScript. Decide

on the lowest level of compatibility-for example, "the system should be compatible with IE

version 3.0 and above and Netscape version 2.0 and above"-and test that the system does

indeed work without problem on the early browser versions.

Browser-specific extensions. HTML is an evolving standard (HTML 4.0 is the latest

specification) and should not be confused with HTML extensions specific to a particular

browser implementation. For example, the table border color tag (<TABLE BORDER

COLOR="$$$$$$">) is specific to Microsoft Internet Explorer; the Server script tag (<SERVER>)

is an extension introduced with Navigator version 4.0.

Browser nuances. Even with the same release version, browsers behave differently on different

platforms, and when used with different language options. Testing should cover at least the

main platforms (Unix, Windows, Mac, and Linux) and the expected language options.

Page display

The display of pages in a browser forms the all-important interface between the customer and

the business. Get this wrong in any way, and the job of building customer confidence and trust

becomes much more difficult.

Incorrect display of pages. Displaying all pages correctly is not as easy as it sounds-most e-

commerce systems generate Web pages dynamically (that is, they access a database and display

the results in a browser) rather than display static HTML. Problems can occur-for example,

when the browser retrieves an empty result set from the database or when a database

connection is unavailable.

A page display might also involve loading resources (such as applets) beforehand, and you

could encounter problems when such resources are unavailable. Test that your system handles

such exceptions appropriately.

Runtime error messages. Users get frustrated when a browser throws up unexpected error

messages. Such error messages are generally unfriendly and not meaningful to users;

moreover, they leave a poor impression on the customer. Carry out tests to ensure that the

application captures and handles all errors by, for example, generating an appropriate and

user-friendly error page.

Poor page download times. US Web tracker Zona Research estimates that page load times of 8

seconds or more combined with ISP download times could cause up to 30 percent of customers

to leave a site before buying anything. Pages that have a high graphical content and/or use

applets, though aesthetically pleasing, are often download problematic. Test download time

under realistic test conditions (that is, account for typical Internet traffic) rather than testing it

locally.

Dead hyperlinks. Dead hyperlinks are a frequent cause of customer frustration; even the most

popular portals suffer from hyperlinks that lead nowhere. Several automated tools now test

hyperlinks.

Plug-in dependency. Developers gear some sites toward browsers that have a particular plug-

in-the Flash graphics plug-in or language plug-ins are some examples. However, it is

unreasonable to turn away a potential e-customer simply because the site is unusable without

the plug-in. Test that a site is functionally equivalent with and without the plug-in.

Aesthetics. Sites need to be aesthetically pleasing-those that aren't run the risk of conveying a

poor image or, even worse, damaging an existing brand image. Where two competing sites are

otherwise equal, a user's choice may rest on aesthetic appeal alone. Though somewhat

subjective, aesthetic reviews against competitive sites are valuable and force you to look at

what competitors are doing.

Font sizing. Most browsers allow users to change font sizes. For example, in MS Internet

Explorer, users can vary font sizes from "smallest" to "largest." Designers often work with a

particular font setting on their browser; consequently, site designs can often break-up in

different font settings.

Session management

HTTP is a stateless protocol, and server-side programming tools that use Java or Active Server

Pages make extensive use of session objects to capture state information. This is, for example,

how many pages store items in a shopping cart. Our experience indicates that any system using

session management should be tested for several characteristics.

Session expiration. Most applications and Web servers configure sessions so that they expire

after a set time. Attempting to access a session object that has expired causes an error, and must

be handled within the code; often it's not. Developers tend to overlook testing for session

expiration, largely because under normal operational circumstances, session expiration is

unlikely to occur.

Session storage. Consider if any issues relate to the storing of session objects (which often

depend on the application software). For example, session objects may be stored as cookies, but

what if users do not have cookies enabled in their browsers? Also, are there any limitations to

the physical size of session objects?

Usability

Good site usability is crucial for attracting and retaining customers; indeed, one study

indicated that 67 percent of customers did not complete online purchases because of poor

usability.

Usability covers a broad area and is often hard to define-or never defined at all. However, this

lack of definition conflicts with testing and the need to have testable requirements. (If you can't

test requirements, how will you know that they have been met?)

As a rule of thumb, usability is the ease with which a customer can perform a set of tasks,

typically determined by the time taken for successful completion. You can test usability

through usability studies, in which you give a group of individuals selected tasks to carry out,

observe their performance, and collect feedback. Alternatively, you can obtain this information

in joint facilitation sessions in which Web site designers sit down with users immediately after

a usability session and obtain direct verbal feedback on the site's usability.

Nonintuitive design. You can label aspects of a Web site as nonintuitive if, on average, it takes a

new visitor a disproportionate amount of time to perform set tasks. When designers become

closely involved in a site's design, it becomes harder for them to objectively assess the site's

intuitiveness.

Poor site navigation. Site navigation is crucial for attracting customers and retaining them.

Sophisticated Web sites, such as for travel booking, need to pay particular attention to

navigation issues.

Catalog navigation. Large product catalogs are central to many e-commerce systems, B2B

procurement systems in particular. Customers should be able to quickly browse and search

through catalogs. Developers can define tests to measure the effectiveness of product

navigation mechanisms. For example, you could test that a search on particular keywords

brings up the correct products.

Lack of help. It's not always obvious what to do on a Web site. For example, users may need to

fill out forms in a particular sequence because they have associated validation rules that raise

errors when some information is not correctly filled in. Guiding a customer through

interactions is a key factor for first-time visitors.

Content analysis

So far, I've been concerned with the delivery and presentation of content. However, the actual

content provided by a site also needs to be "tested."

Offensive, misleading, and litigious content. An e-commerce site's contents must be sound. In

the UK, legislation such as the Trade Marks Action (1994), Control of Misleading

Advertisements Regulations (1988), and Obscene Publications Act (1976) applies to all

published material, including Web content. Products or services that are incorrectly described

or misleading (check those product descriptions!) may violate the Trade Description Act.

Infringements. Test your Web site content for infringements. Graphics and images used in the

design should be royalty free (if not wholly owned); also check for copyright infringement. In

some circumstances, the courts will consider use of trademarked material without the owner's

written consent as infringement. Courts would almost certainly view discrediting or

denigrating a competitor's brand as an infringement.

Personalization. Increasingly, e-commerce systems are incorporating customer relationship

management functionality that provides personalization for individual customers. In many

cases, a personalization profile determines what content the site offers to these customers.

However, situations can occur where the site offers incorrect or inappropriate content to

customers because of errors in the personalization functionality.

Availability

Unavailability equals lost revenue; it also harms a business's reputation and can encourage

customers to take their business to competitors. Businesses need to offer 24/7 availability to

their customers, with availability levels of 99 percent or higher being the desired norm.

Unacceptable levels of unavailability. Several factors can influence availability, such as

hardware reliability, software reliability, the effectiveness of load balancing, and the database's

ability to handle concurrent users. Before going live, predicted business usage patterns should

indicate maximum stress levels. You should test system availability against the maximum

stress levels plus a safety margin for a defined period of time.

Denial of service. Yahoo, Amazon.com, and Buy.com have all recently suffered denial-of-

service attacks. Such attacks (also known as saturation attacks) involve bombarding the Web

server with bogus requests, making it inaccessible to genuine users. Organizations are not

defenseless against such attacks; Amazon.com for example, uses security software to filter out

bogus requests. Test your e-commerce systems for vulnerability to denial-of-service attacks.

Backup and recovery

You can't guarantee that any component of your e-commerce system won't fail, whether

hardware or software, so it's sensible to test that you can quickly recover from a failure when it

does happen.

Failure/fall-over recovery. Design systems so that one component's failure doesn't necessarily

bring down other components. In MS Internet Information Server (version 4.0), for example,

Active Server Page scripts can run from the Web server as separate processes.

Test both the speed and ease at which systems can recover from component failure; for

example, how do you restart the service? Is it a case of pressing the restart button, or should the

system support team look at other factors first? Is it a simple administrative task, or one that

requires specialist knowledge? For non-fatal failures, you might be able to reload the system's

affected components rather than taking the system down completely. For example, in a Java

implementation, you can reload Java servlets dynamically.

Backup failure. How quick and easy it is to perform and restore backups? If database records

become corrupted, for example, how quickly can you backup the data? How quickly can new

hardware, software, and networking components replace failed components?

Fault tolerance. In fault-tolerant architectures, redundant hardware and software components

take over when components fail. For example, if one Web server goes down, a second Web

server can service requests, and the problem remains transparent to the user. Test fault

tolerance by switching off individual components or simulating their failure. My colleagues

and I know of one incident where the system used clustering technology to provide fault

tolerance. However, testing found that the clustering technology was ineffective because it was

incorrectly configured.

Transactions

 Transaction processing is a central element of most e-commerce systems. With distributed

systems, transaction processing can span several individual systems, leading to more complex

testing.

Transaction integrity. Does the system correctly perform all aspects of transaction processing?

For example, does the system call the appropriate database triggers and procedures? Does it

commit and roll back transactions correctly? Have system developers set the appropriate

isolation levels? Devise a set of inputs that will attempt to create "nonstandard" transactions-for

example, transactions with a zero quantity or value-as well as standard ones.

Throughput. The most popular Internet sites easily exceed a million hits per day. In a

transactional e-commerce system, you must test the transaction engine's throughput; that is, its

ability to manage, say, 1,000 transactions per minute. Most modern testing and monitoring

tools have facilities for throughput testing.

Auditing. An audit trail records all transactions made by system. Tests should verify that

audits satisfy all legal obligations, and that auditing software captures all the required

transaction details, such s transaction time and date, originator and recipient, values, and so on.

Shopping, order processing, and purchasing

My experience suggests that functional testing typically consumes between 25 and 50 percent

of the total testing effort. In most e-commerce systems, shopping, order processing, and

purchasing form the core functionality. Other functional areas can include customer profiling,

discount and offer management, automatic marketing, and inventory management. Although

most developers largely consider functional testing a manual process, tools (such as Mercury

Winrunner) can often help automate aspects of functional testing by automatically capturing

and replaying user interactions.

Shopping-cart functionality. Many e-commerce sites use shopping carts (or some variant along

the same theme) as a mechanism for the customer to compile orders. Basic shopping carts

provide "list and total-up" functionality, whereas more sophisticated ones can provide extra

functionality, such as tax and shipping calculation, loyalty discounts, and "save and recall"

features for orders. Testing should cover all aspects of shopping-cart functionality based on test

suites of shopping items.

Order processing. Order processing can involve the automated creation or update of

transactions, or the delivery of information to back-end systems.

Payment processing. Approaches to payment processing vary from the simple capture of credit

card details for offline manual processing to real-time card processing. Irrespective of the

chosen approach, you must test several basic actions, such as determining whether the system

carries out the necessary validation and debits the correct amount from the credit card. The log

must also correctly record each transaction.

Order tracking. An increasingly common feature in B2B systems is the ability to track orders.

One point of testing is the accuracy of the order-tracking functionality. You need to enter test

orders into system, and compare automated system's status report to the actual order status.

Internationalization

E-commerce systems, especially B2C systems, are often required to operate across geographic

boundaries. Although English is the dominant language, non-English sites are increasingly

common and gaining a head start in cornering foreign markets. A system must operate in

selected target countries as well as it does in its home country.

Language support. Does the site offer the option to view non-English pages? If the choice of

language is based on browser preferences, does it work on all the desired browsers? Many

older browsers do not support language customization.

Language display. Test that words are correctly displayed and that sentences are

grammatically correct. Use a native speaker to verify that this is the case.

Cultural sensitivity. Does the site respect cultural differences between the home and foreign

country? Check that a site does not include content that is likely to offend the culture or

religious affiliation of the country concerned.

Regional accounting. Developing e-commerce systems where trade takes place across

accounting regions raises issues about how to charge customers. For example, tests should

ensure that the system correctly calculates taxes and exchange rates for the regions concerned.

Operational business procedures

E-commerce business procedures often involve both manual and automated procedures. A

telephone help desk, for example, can handle product returns or order inquires, but relies on

information from the automated processes. Don't forget that you must test e-business

procedures, not just the e-commerce system per se.

As a first step, identify the various business scenarios that can take place. For example, a

customer can request a product return (over the phone, or via e-mail or other communications

means) or cancel an order. Payments can be delayed or canceled.

Next, try and estimate the size and scale of each scenario: How many returns are you likely to

get during a peak period? Simulate the peak situation and see how well the e-business

procedure copes. In particular, observe where the main bottlenecks are and where you can

make the most value-added improvements. Before going live, ensure that you know at least

the rough capacity of operational business procedures.

Systems integration

Developers must often integrate e-commerce systems with existing back-office or legacy

systems, such as accounting and stock-control systems. Or, you could need to integrate e-

commerce systems with third-party applications, such as e-mail. In some cases, such as in

cross-platform integration, you can employ specialized middleware technology such as

CORBA (the Common Object Request Broker Architecture) or messaging (implemented in

software such as IBM MQ Series) to integrate systems.

Data interface format. The data interface defines the format of data exchanged by front- and

back-end systems. In a B2B scenario, for example, we must ensure that an order between a

supplier and a consumer conforms to an agreed order format. Such interfaces can vary from

simple to highly complex, and tests should ensure that the system generates and transmits data

in the correct format. Tools such as XML (Extensible Mark-Up Language) alleviate data

interface problems by providing document type definitions (DTDs).

Interface frequency and activation. The processing between front- and back-end systems may

be time dependent. For example, a back-end system could be necessary to process a data

transmission from the front-end system immediately or within a defined period. Tests should

ascertain whether a system actually observes timeliness constraints and whether it activates

data transmissions at the correct time.

Updates. One system must often update information in another system. Verify that batch

programs and remote procedures perform the necessary update operations without side

effects.

Interface volume capacity. Do the interfaces handle the volume of data envisaged? Bear in

mind that legacy back-end systems may not have been designed for the volume of data typical

today.

Integrated performance. The performance of two systems integrated together can be a key

issue. For example, you may need to integrate an e-commerce system with the payment

systems of a financial processor to process credit cards online.

In another scenario, employing middleware technology such as CORBA can incur unacceptable

overhead by using object brokers. Perform tests under simulated business usage to ensure

acceptable integration performance.

Performance

The performance that matters the most is the end performance delivered to the customer, and

Internet traffic makes this performance variable. Testing's goal is to ascertain a system's

performance degradation profile (how fast and how much it degrades) and system

breakpoints, which are the thresholds over which a system component, hardware or software,

will crash or stop functioning.

Performance bottlenecks. An e-commerce system is only as strong as its weakest link. For

example, performance suffers when you pair a Web server that can handle thousands of

multiple users with a database that can handle only 20 concurrent connections. Effective testing

involves identifying and stressing the weakest links to avoid overspending on the strong links.

Load handling. A large UK catalog firm's supply chain became unable to cope with order

processing in time for Christmas 1999. This situation forced the business to turn away

customers in mid-December. Determining the rate of performance degradation (the

degradation profile) and a system's breakpoints is essential to achieving specific quality of

service (QoS) requirements. For example, you can specify a QoS requirement such as,

"Performance will drop no more than 10 percent when the number of concurrent users reaches

10,000."

You can use tools such as Apache JMeter <http://java.apache.org/> and WebLoad

<http://www.radview.com/> to test server performance both on static and dynamic

resources (such as CGI scripts, servlets, or Perl scripts) under different load types. You can

ramp up the traffic on a Web site from 100 to 1,000 simultaneous users, depending on your

estimates for normal and peak business usage.

Scalability analysis. E-commerce systems that do not scale well are limited from day one.

Scalability analysis involves "testing" a system's architectural design and its capability to meet

future (rather than current) performance requirements. Basic areas of scalability are hardware,

application software, databases, and middleware.

Horizontal scalability involves adding new components, such as servers. Vertical scalability

concerns how existing components can be grown, for example, by adding more disks to a disk

array. Scalability analysis seeks to identify where-and how easily-you can scale the

architecture.

http://java.apache.org/
http://www.radview.com/

Login and security

Security (or a lack of it) is a major barrier to e-commerce, particularly in Europe. With the rise

in credit card fraud and high-profile hacker attacks, customers increasingly avoid e-commerce

sites and systems they perceive as insecure.

Login/registration capability. Several potential problems can arise from failed login

functionality. The most typical of such problems is a user providing a valid login and password

but not being able to log in. Other problems can be more complex, such as when the system

sets personalization settings incorrectly. Where appropriate, tests should also verify that the

system correctly sets privilege levels.

Penetration and access control. Security personnel define penetration as unauthorized access to

restricted areas and information. External penetration refers to attacks from the outside (over

the Internet); internal penetration refers to attacks from within.

A large recruitment agency recently damaged its image when hackers gained unauthorized

access (over the Internet and without password) to its resume database. This database

contained sensitive information on workers' personal details and salary.

We also know of a case where an intruder gained access to unauthorized areas by simply

typing in a URL directly rather than going through the intended route via the home page. You

should test security measures against unauthorized access to determine the actual level of

protection.

Insecure information transmission. Transfer of information occurs from browser to server,

server to browser, server to back-end system and vice versa. For some, Secure Sockets Layer

(SSL) has become the de facto standard for secure online communications. Where information

is sensitive, you must test against stipulated security requirements. What level of encryption is

required, and does the encryption system meet these requirements?

Web attacks. How prone is the system to Web attacks such as spoofing, snooping, and sniffing?

Where Web attacks are a high priority (such as for financial systems), consider a security

evaluation from an independent security organization. Some security tools, for example, check

for sniffers and highlight insecure network configurations.

Computer viruses. How resilient is the system against computer viruses? Test that any virus

protection software loads at the appropriate time, and that the necessary procedures (manual

or automated) to update virus files are in place.

Digital signatures. The use of digital signatures is on the rise, particularly in secure document

exchange applications where authentication and nonrepudiation are key. Tests should cover

the means by which digital signatures are generated and issued. They should also check

whether certificate files are loaded and installed correctly, and that the application handles

invalid signatures. Don't assume that it will work; test that it does!

The production of high-quality e-commerce systems relies on comprehensive and well-

managed testing. I strongly suggest that project and test managers treat the ideas presented

here not as a definitive guide, but as a framework for fleshing out, rethinking, or evaluating

their own test models and strategies. We have a simple rule of thumb about testing: If in doubt,

you need to do more testing.

